fischer matrices of dempwolff group $2^{5}{^{cdot}}gl(5,2)$

نویسندگان

ayoub basheer mohammed basheer

jamshid moori

چکیده

‎in [u‎. ‎dempwolff‎, ‎on extensions of elementary abelian groups of order $2^{5}$ by $gl(5,2)$‎, ‎textit{rend‎. ‎sem‎. ‎mat‎. ‎univ‎. ‎padova}‎, ‎textbf{48} (1972)‎, ‎359‎ - ‎364.] dempwolff proved the existence of a group of the‎ ‎form $2^{5}{^{cdot}}gl(5,2)$ (a non split extension of the‎ ‎elementary abelian group $2^{5}$ by the general linear group‎ ‎$gl(5,2)$)‎. ‎this group is the second largest maximal subgroup of the sporadic thompson simple group $mathrm{th}.$ in this paper we‎ ‎calculate the fischer matrices of dempwolff group $overline{g} =‎ ‎2^{5}{^{cdot}}gl(5,2).$ the theory of projective characters is‎ ‎involved and we have computed the schur multiplier together with a‎ ‎projective character table of an inertia factor group‎. ‎the full‎ ‎character table of $overline{g}$ is then can be calculated easily‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly

The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...

متن کامل

the fischer-clifford matrices of an extension group of the form 2^7:(2^5:s_6)

the split extension group $a(4)cong 2^7{:}sp_6(2)$ is the affine subgroup of the symplectic group $sp_8(2)$ of index $255$‎. ‎in this paper‎, ‎we use the technique of the fischer-clifford matrices to construct the character table of the inertia group $2^7{:}(2^5{:}s_{6})$ of $a(4)$ of index $63$‎.

متن کامل

on the fischer-clifford matrices of a maximal subgroup of the lyons group ly

the non-split extension group $overline{g} = 5^3{^.}l(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in ly. the group $overline{g}$ in turn has l(3,5) and $5^2{:}2.a_5$ as inertia factors. the group $5^2{:}2.a_5$ is of order 3 000 and is of index 124 in l(3,5). the aim of this paper is to compute the fischer-clifford matrices of $overline{g}$, which together with associated parti...

متن کامل

Matrices. Abelian Group of Matrices

The articles [11], [6], [13], [14], [4], [5], [2], [10], [8], [3], [7], [12], [9], and [1] provide the notation and terminology for this paper. For simplicity, we follow the rules: x is a set, i, j, n, m are natural numbers, D is a non empty set, K is a non empty double loop structure, s is a finite sequence, a, a1, a2, b1, b2, d are elements of D, p, p1, p2 are finite sequences of elements of ...

متن کامل

unit group of algebra of circulant matrices

let $cr_n(f_p)$ denote the algebra of $n times n$ circulant‎ ‎matrices over $f_p$‎, ‎the finite field of order $p$ a prime‎. ‎the‎ ‎order of the unit groups $mathcal{u}(cr_3(f_p))$‎, ‎$mathcal{u}(cr_4(f_p))$ and $mathcal{u}(cr_5(f_p))$ of algebras of‎ ‎circulant matrices over $f_p$ are computed‎.

متن کامل

On the Fischer-Clifford matrices of the non-split extension $2^6{{}^{cdot}}G_2(2)$

The group $2^6{{}^{cdot}} G_2(2)$ is a maximal subgroup of the Rudvalis group $Ru$ of index 188500 and has order 774144 = $2^{12}.3^3.7$. In this paper, we construct the character table of the group $2^6{{}^{cdot}} G_2(2)$ by using the technique of Fischer-Clifford matrices.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of group theory

ناشر: university of isfahan

ISSN 2251-7650

دوره 1

شماره 4 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023