fischer matrices of dempwolff group $2^{5}{^{cdot}}gl(5,2)$
نویسندگان
چکیده
in [u. dempwolff, on extensions of elementary abelian groups of order $2^{5}$ by $gl(5,2)$, textit{rend. sem. mat. univ. padova}, textbf{48} (1972), 359 - 364.] dempwolff proved the existence of a group of the form $2^{5}{^{cdot}}gl(5,2)$ (a non split extension of the elementary abelian group $2^{5}$ by the general linear group $gl(5,2)$). this group is the second largest maximal subgroup of the sporadic thompson simple group $mathrm{th}.$ in this paper we calculate the fischer matrices of dempwolff group $overline{g} = 2^{5}{^{cdot}}gl(5,2).$ the theory of projective characters is involved and we have computed the schur multiplier together with a projective character table of an inertia factor group. the full character table of $overline{g}$ is then can be calculated easily.
منابع مشابه
On the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly
The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...
متن کاملthe fischer-clifford matrices of an extension group of the form 2^7:(2^5:s_6)
the split extension group $a(4)cong 2^7{:}sp_6(2)$ is the affine subgroup of the symplectic group $sp_8(2)$ of index $255$. in this paper, we use the technique of the fischer-clifford matrices to construct the character table of the inertia group $2^7{:}(2^5{:}s_{6})$ of $a(4)$ of index $63$.
متن کاملon the fischer-clifford matrices of a maximal subgroup of the lyons group ly
the non-split extension group $overline{g} = 5^3{^.}l(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in ly. the group $overline{g}$ in turn has l(3,5) and $5^2{:}2.a_5$ as inertia factors. the group $5^2{:}2.a_5$ is of order 3 000 and is of index 124 in l(3,5). the aim of this paper is to compute the fischer-clifford matrices of $overline{g}$, which together with associated parti...
متن کاملMatrices. Abelian Group of Matrices
The articles [11], [6], [13], [14], [4], [5], [2], [10], [8], [3], [7], [12], [9], and [1] provide the notation and terminology for this paper. For simplicity, we follow the rules: x is a set, i, j, n, m are natural numbers, D is a non empty set, K is a non empty double loop structure, s is a finite sequence, a, a1, a2, b1, b2, d are elements of D, p, p1, p2 are finite sequences of elements of ...
متن کاملunit group of algebra of circulant matrices
let $cr_n(f_p)$ denote the algebra of $n times n$ circulant matrices over $f_p$, the finite field of order $p$ a prime. the order of the unit groups $mathcal{u}(cr_3(f_p))$, $mathcal{u}(cr_4(f_p))$ and $mathcal{u}(cr_5(f_p))$ of algebras of circulant matrices over $f_p$ are computed.
متن کاملOn the Fischer-Clifford matrices of the non-split extension $2^6{{}^{cdot}}G_2(2)$
The group $2^6{{}^{cdot}} G_2(2)$ is a maximal subgroup of the Rudvalis group $Ru$ of index 188500 and has order 774144 = $2^{12}.3^3.7$. In this paper, we construct the character table of the group $2^6{{}^{cdot}} G_2(2)$ by using the technique of Fischer-Clifford matrices.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of group theoryناشر: university of isfahan
ISSN 2251-7650
دوره 1
شماره 4 2012
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023